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Abstract

We study strong equilibria in symmetric capacitated cost-
sharing games. In these games, a graph with designated
source s and sink t is given, and each edge is associated
with some cost. Each agent chooses strategically an s-t path,
knowing that the cost of each edge is shared equally between
all agents using it. Two variants of cost-sharing games have
been previously studied: (i) games where coalitions can form,
and (ii) games where edges are associated with capacities;
both variants are inspired by real-life scenarios. In this work
we combine these variants and analyze strong equilibria (pro-
files where no coalition can deviate) in capacitated games.
This combination gives rise to new phenomena that do not
occur in the previous variants. Our contribution is two-fold.
First, we provide a topological characterization of networks
that always admit a strong equilibrium. Second, we establish
tight bounds on the efficiency loss that may be incurred due to
strategic behavior, as quantified by the strong price of anarchy
(and stability) measures. Interestingly, our results are qualita-
tively different than those obtained in the analysis of each
variant alone, and the combination of coalitions and capaci-
ties entails the introduction of more refined topology classes
than previously studied.

1 Introduction
In recent years, a significant portion of AI research has de-
parted from focusing on single agents to revolving around
the study of multiagent systems. The construction of net-
works by autonomous agents is a typical example of this
shift in focus. These situations can be modeled as cost-
sharing connection games, which have been extensively
studied (Anshelevich et al. 2003; 2004; Epstein, Feldman,
and Mansour 2009; Albers 2009; Feldman and Ron 2012).
For example, consider the construction of a large computer
network used by different countries, where each country is
an autonomous system that serves its own strategic interests.

In cost-sharing games, a network is given and each edge
is associated with a cost. Each one of n agents wishes to
construct a path between its source and sink nodes, where
the cost of each edge is shared equally between the agents
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who use it; each agent desires to minimize his individual
cost. Returning to our motivating example, a large computer
network may be used by different countries, which should
jointly cover its cost. All countries wish to use the network
links, but prefer to do so at minimal cost.

The analysis of these games evolved around the Nash
equilibrium (NE) notion — a profile of strategies from
which no agent can benefit by a unilateral deviation. In
recent years, two interesting variants of these games have
been considered, both inspired by real-life scenarios. First,
a group of agents may form a coalition and collaborate for
the benefit of all the members in the coalition. This scenario
is formalized using the notion of a strong equilibrium (SE)
(Aumann 1959). A SE is a strategy profile from which no
coalition can deviate in a way that benefits each one of its
members. SE in cost-sharing connection games have been
studied in (Epstein, Feldman, and Mansour 2009). The sec-
ond variant considers capacity constraints on the network
edges (Feldman and Ron 2012). Here, each edge is asso-
ciated with some capacity that limits the number of agents
who can use it. Both variants can naturally occur in our mo-
tivating example. Indeed, countries may collaborate to im-
prove their standing, and capacity constraints may arise due
to bandwidth limits.

While each of these variants has been previously studied
alone, the combination of the two has not been previously
considered. This is the focus of the present paper. Our main
focus is on symmetric games, where all agents share the
same source and sink nodes. Interestingly, the combination
of coalitions and capacities gives rise to new phenomena that
do not occur in any of the previous variants.

Example 1 [Equilibrium existence]. In the plain setting
(i.e., with no capacities or coalitions), the profile in which
all agents use the lowest-cost path from the source to the
sink is clearly a NE. Now consider the variants of coali-
tions and capacities. The profile just mentioned is clearly
a SE as well, as no coalition can benefit by deviating from
the lowest-cost path. As for capacities, while capacity con-
straints may limit the use of the lowest-cost path, it has been
proven that every (feasible) capacitated game admits a NE,
due to the existence of an exact potential function (Feldman
and Ron 2012). Consider next the combination of coalitions
and capacities. Here, even the mere existence problem be-
comes non-trivial. Consider, for example, the game depicted



Figure 1: A game with no SE played on a simple EP network

in Figure 1, played by two agents. In our figures we use the
notation (x, y) to denote an edge with cost x and capacity
y. One can easily verify that in this game, the unique NE
(up to renaming of agents) is one where one agent uses the
upper edge (a) at cost 1, and the other agent uses the path
b, c at cost 1.3. However, this profile is not a SE, as the two
agents can deviate to the paths b, c and b, d, respectively, at
the respective costs of 0.7 and 1.1. Since every SE is also a
NE, and the only NE is not a SE, we conclude that this game
does not admit a SE.

Example 2 [Efficiency loss]. As another example, con-
sider the efficiency loss incurred due to strategic behavior.
The standard measure used to quantify the efficiency loss is
the price of anarchy (PoA), defined as the ratio between the
cost of the worst-case NE and the optimal cost (where the
social cost is defined as the overall cost of the edges in use).
In the plain game, it has been shown that the PoA can be as
bad as n (i.e., the number of agents), and this is tight (An-
shelevich et al. 2003). The consideration of coalitions signif-
icantly reduces the loss; in fact, every SE is optimal. In ca-
pacitated games, the PoA depends on the network topology.
For example, if the network topology adheres to a series-
parallel structure (defined in Section 2.2), then the PoA is
bounded by n. Do coalitions reduce the efficiency loss in
capacitated games as in their uncapacitated counterparts?
Interestingly, the answer is no for series-parallel networks,
but the answer is affirmative for a smaller set of topologies.
Once again, the combination of coalitions and capacities in-
troduces interesting phenomena, and requires a more refined
classification of network topologies than each variant alone
(see more details below).

1.1 Our Results
Equilibrium existence. As mentioned above, not all sym-
metric capacitated cost-sharing games admit a SE. We pro-
vide a full characterization of network topologies that do
admit a SE; i.e., every game played on a topology in this
class admits a SE, and for every topology not in this class,
there exists a game that does not possess a SE. The analysis
of this part requires the introduction of a new class of net-
works, which we refer to as Series of Parallel Paths (SPP)
networks. This class is defined as all networks that are the
concatenation of parallel-path networks.

Efficiency loss. Previous analysis of the efficiency loss in
cost-sharing games showed that the network topology sig-
nificantly affects the incurred loss. This observation is rein-
forced in this work, as summarized below (see also Table 1
for a subset of our results). We provide tight bounds on the

SPP and EP SP General

PoA Uncap. n n n
Cap. n n unbounded

SPoA Uncap. 1 1 1
Cap. (*) Hn n unbounded

SPoS Cap. (*) Hn Θ(n) unbounded

Table 1: A comparison between upper bounds for the PoA
in different scenarios. Cap. and uncap. are shorthands for
capacitated and uncapacitated. Our results are marked with
an asterisk (*). All bounds are tight.

strong price of anarchy (SPoA), defined as the ratio between
the cost of the worst-case SE and the optimal cost and on the
strong price of stability (SPoS), defined analogously with re-
spect to the best-case SE.

Epstein et al. (2009) establish an upper bound of Hn (i.e.,
the nth harmonic number, which is roughly log(n)) on the
SPoA in every game (including asymmetric games) that ad-
mits a SE. As mentioned above, this result does not carry
over to capacitated networks. However, we show that this re-
sult does carry over to a specific class of network topologies,
namely extension-parallel (EP) and SPP networks. More-
over, we provide an example showing that this bound is
tight. In series-parallel (SP) networks, the SPoA is at most
n (follows from the upper bound on the PoA), and we pro-
vide an example showing that this is tight. For general net-
works, we show that the SPoA can be arbitrarily high, even
in instances with only two agents. Interestingly, our analy-
sis results in a more refined classification of topologies than
was required for the study of capacities or coalitions alone,
most notably in the distinction between subclasses of SP net-
works.

In addition, we provide bounds on the SPoS. We show that
the SPoS can also be as high as Ω(n) in SP networks and is
unbounded in general networks. Interestingly, while the PoS
is significantly better than the PoA (1 versus n in uncapaci-
tated games, and an even wider gap in capacitated games), in
capacitated games we show that for all the topology classes
we consider, the bounds on the SPoS and SPoA are asymp-
totically the same. A natural interpretation of the PoS mea-
sure is the loss that is incurred if there exists a coordinator
who can suggest an initial configuration to the agents. While
a coordinator can sometimes reduce the efficiency loss, our
results here imply that a coordinator may not be useful in the
worst case.

Extensions. We consider two natural extensions to our
model. First, we consider asymmetric games. Here, we pro-
vide a characterization of network topologies that always ad-
mit a SE, and provide an example of a simple EP network for
which the SPoA is unbounded. Second, we show that all of
our results regarding symmetric games extend to undirected
networks as well. Due to space constraints, these extensions
appear in the full version (Feldman and Geri 2014).

1.2 Related Work
Cost-sharing connection games were introduced by An-
shelevich et al. (2003), and have been widely studied since.



The fair cost-sharing mechanism has been studied in (An-
shelevich et al. 2004). A key property of fair cost-sharing
games is the fact that they admit an exact potential func-
tion and thus possess a pure strategy NE (Rosenthal 1973;
Monderer and Shapley 1996). Settings with coalitions in
congestion games have been studied by Holzman and Law-
Yone (1997; 2003), and Epstein et al. (2009) studied the ex-
istence and quality of SE in cost sharing games. The char-
acterization of network topologies that admit SE in conges-
tion games with monotone cost functions has been later es-
tablished by Holzman and Monderer (2014). The PoA mea-
sure has been introduced by Koutsoupias and Papadimitriou
(1999) to study the quality of NE in games. The analogue
of the PoA with respect to SE (called the strong PoA) was
introduced and analyzed by Andelman et al. (2007). The
SPoA of cost-sharing games was studied in (Epstein, Feld-
man, and Mansour 2009; Albers 2009), and was also studied
with respect to various additional settings; see, e.g., (Fiat et
al. 2007; Chien and Sinclair 2009). The consideration of ca-
pacities in cost-sharing games was first suggested by Feld-
man and Ron (2012).

2 Model and Preliminaries
2.1 Symmetric Capacitated Cost-Sharing Games
A symmetric capacitated cost-sharing (CCS) connection
game is given by a tuple

∆ = (n,G = (V,E), s, t, {pe}e∈E , {ce}e∈E)

where n is the number of agents, G = (V,E) is a directed
graph, s, t ∈ V are the source and sink nodes (respectively),
and each edge e ∈ E is associated with a cost pe ∈ R≥0 and
a capacity constraint ce ∈ N ∪ {0}. Each agent wishes to
construct an s-t path in G while maintaining minimal cost.
The strategy space of agent i, denoted by Σi, is the set of
all s-t paths in G. The joint strategy space is denoted by
Σ = Σ1 × . . .× Σn.

Given a strategy profile s = (s1, . . . , sn) ∈ Σ, the num-
ber of agents that use an edge e in the profile s is denoted by
xe(s) = |{i|e ∈ si}|. A profile s is said to be feasible if for
every e ∈ E, xe(s) ≤ ce(s). A game is said to be feasible
if it admits a feasible strategy profile. Throughout this paper
we consider feasible games. For a given strategy profile s
and a coalition C, the induced strategy profile on the agents
of the coalition C is denoted by sC , and the strategy profile
of the rest of the agents is denoted by s−C . We consider the
fair cost-sharing mechanism, where the cost of each edge is
shared equally between all the agents who use it. The cost
of agent i in a strategy profile s is

pi(s) =

{∑
e∈si

pe
xe(s) if s is feasible

∞ otherwise

We use the utilitarian objective function, that is, the social
cost of a strategy profile s is the sum of costs of all agents,
cost(s) =

∑
i pi(s).

A strategy profile s is a Nash equilibrium (NE) if no
agent can improve her cost by deviating to another strategy,
i.e., for every i and every strategy s′i ∈ Σi, it holds that

pi(s) ≤ pi(s
′
i, s−i) (where s−i denotes the strategy profile

of all agents except i in s). A strong equilibrium (SE) is a
strategy profile in which no coalition can deviate jointly in
a way that will strictly decrease the cost of every coalition
member. Formally, a profile s is a SE if for every coalition of
agentsC and every set of strategies s′C ∈ ΣC , there exists an
agent j ∈ C such that pj(s) ≤ pj(s′C , s−C). The sets of NE
and SE of a game ∆ are denoted by NE(∆) and SE(∆),
respectively.

We use the price of anarchy (PoA) and price of stabil-
ity (PoS) measures to quantify the efficiency loss incurred
due to strategic behavior. Let s∗ be a strategy profile with
minimal social cost in a game ∆. Then, the PoA of ∆ is
the ratio between the cost of the worst-case NE and the cost
of s∗, namely PoA = maxs∈NE(∆)

cost(s)
cost(s∗) . Similarly, the

PoS is the ratio between the cost of the best-case NE and
the cost of s∗, namely PoS = mins∈NE(∆)

cost(s)
cost(s∗) . The

analogues of the PoA and PoS with respect to SE are named
the strong price of anarchy (SPoA) and strong price of sta-
bility (SPoS). Formally, SPoA = maxs∈SE(∆)

cost(s)
cost(s∗) and

SPoS = mins∈SE(∆)
cost(s)
cost(s∗) . For a family of games, these

measures are defined with respect to the worst case over all
the games in the family.

2.2 Graph Theoretic Preliminaries
A symmetric network is a graph G = (V,E) with two des-
ignated nodes, a source s ∈ V and a sink t ∈ V . We hereby
present three important operations on symmetric graphs.

• Identification: Given a graph G = (V,E), the identi-
fication of two nodes v1, v2 ∈ V yields a new graph
G′ = (V ′, E′), where V ′ = (V ∪ {v})\{v1, v2} and
E′ includes all the edges of E, where each edge that was
connected to v1 or v2 is now connected to v instead. Figu-
ratively, the identification operation is the collapse of two
nodes into one.

• Series composition: Given two symmetric networks,
G1 = (V1, E1) with s1, t1 ∈ V1 and G2 = (V2, E2) with
s2, t2 ∈ V2, the series composition G = G1 → G2 is the
network formed by identifying t1 and s2 in the union net-
work G′ = (V1 ∪V2, E1 ∪E2). In the composed network
G, the new source is s1 and the new sink is t2.

• Parallel composition: Given two symmetric networks,
G1 = (V1, E1) with s1, t1 ∈ V1 and G2 = (V2, E2) with
s2, t2 ∈ V2, the parallel composition G = G1 ‖ G2 is the
network formed by identifying the nodes s1 and s2 (form-
ing a new source s) and the nodes t1 and t2 (forming a
new sink t) in the union networkG′ = (V1∪V2, E1∪E2).

The following are classes of network topologies that will be
of interest throughout the paper:

• A networkG = (V,E) is a series-parallel (SP) network if
it consists of a single edge, or if there are two SP networks
G1, G2 so that G = G1 → G2 or G = G1 ‖ G2.

• A network G = (V,E) is an extension-parallel (EP) net-
work if one of the following applies: (i) G consists of a
single edge, (ii) There are two EP networks G1, G2 so



Figure 2: A game with no SE played on a Braess graph

that G = G1 ‖ G2, (iii) There is an EP network G1 and
an edge e so that G = G1 → e or G = e→ G1.
Finally, we have to define when a network is embedded

in another network. A symmetric network G is embedded in
a network G′ if G′ is isomorphic to G or to a network de-
rived from G using any number of the following operations:
(i) Subdivision (replacing an edge (u, v) by a new node w
and two edges (u,w) and (w, v)), (ii) Addition of a new
edge connecting two existing nodes (including nodes that
were added using subdivision or extension), (iii) Extension
(adding a new source or sink node and an edge connecting
the new node with the original source or sink node, respec-
tively).

3 Existence of Strong Equilibria
Every symmetric cost-sharing game admits a SE, as all
agents can share the lowest-cost s-t path (Epstein, Feldman,
and Mansour 2009). In the capacitated version, it has been
shown by Feldman and Ron (2012) that a pure NE exists in
every feasible game, by establishing that the game admits
a potential function. Therefore, the consideration of capaci-
ties or coalitions alone does not preclude the existence of an
equilibrium. However, as was already observed in the intro-
duction (recall Figure 1), capacitated games may not admit
any SE, even in a simple EP graph.

An additional example of a game that does not admit a SE
is depicted in Figure 2, on an underlying network known as a
Braess graph. It is not difficult to verify that a game with two
agents played on this graph does not admit any SE either.

As it turns out, the two networks depicted in Figures 1 and
2 are, roughly speaking, the only barriers to SE existence.
This is formalized in the remainder of this section as an exact
characterization of the network topologies that always admit
a SE. We first introduce a new family of network topologies.
Definition 3.1. A symmetric network G is said to be Series
of Parallel Paths (SPP) if there exist networks G1, . . . , Gk,
each constructed by a parallel composition of simple paths,
such that G = G1 → . . .→ Gk.

Note that every SPP network is an SP network, but may
or may not be an EP network.
Definition 3.2. A symmetric network G is said to admit a
SE if every symmetric CCS game played on G admits a SE.

Recall that a symmetric network is defined as a graph with
designated source and sink nodes. According to the last def-
inition, a networkG is said to admit a SE if every CCS game
played on G (i.e., for every assignment of costs and capac-
ities to the edges, and for every number of agents) admits

Algorithm 1 Compute a SE for a network of parallel edges
1. j ← 1

2. For every edge e that has not been assigned agents yet, let
its fractional cost be pe

min{ce,n−
∑j−1

i=1 ni}
.

3. Assign the edge ewith the minimal fractional cost to nj =

min{ce, n−
∑j−1
i=1 ni} agents.

4. If there are agents that have not been assigned an edge,
increment j and go back to step 2.

a SE. Conversely, a network G does not admit a SE if there
exists an example of a game played onG that does not admit
a SE. The following theorem establishes the characterization
of networks that admit a SE.

Theorem 3.3. A network G admits a SE if and only if G is
an SPP network.

The proof is divided into two parts. In Theorem 3.4 we
prove that every SPP network admits a SE, and in Theorem
3.6 we establish the converse direction.

Theorem 3.4. Every SPP network admits a SE.

Proof. We first observe that in our context, networks of par-
allel paths can be reduced to networks of parallel edges,
where each path is replaced by an edge with capacity that
equals the minimal capacity on the path and cost that equals
the total cost of the path. Therefore, it suffices to prove the
assertion of the theorem for networks constructed by series
composition of parallel-edge graphs.

Let G1, . . . , Gk be parallel-edge networks, and let G be
a series composition of these networks. Algorithm 1 com-
putes a strategy profile for games played on parallel-edge
networks. The algorithm first computes the lowest-cost path
in the network, and assigns it to n1 agents (n1 is calculated
by the algorithm). In the jth iteration, the lowest-cost path
that is still available is determined, and assigned to nj agents
(nj is calculated by the algorithm). Since the game is sym-
metric, Algorithm 1 is only concerned with the number of
the agents (denoted nj) and not with their identity. After the
number of agents that use each edge is decided, the actual
agents can be assigned strategies. The algorithm terminates
within at most n steps. In this proof, we show that the re-
turned profile is a SE. For every i = 1, . . . , k, we compute a
profile si for network Gi using Algorithm 1. Since the game
is symmetric we may reorder the agents in an increasing or-
der of their costs, namely, for every profile si, we order the
agents so that for every j < j′, pj(si) ≤ pj′(si).

Let s be the strategy profile in which the strategy of agent
j is the concatenation of his strategies in s1, . . . , sk. Since
we sorted each of the profiles si, the first agent in s uses the
lowest-cost path in each of G1, . . . , Gk, the next agent uses
the second lowest-cost path, and so on. We wish to prove that
s is a SE. Assume that there is a coalition C for which there
is a profitable deviation, yielding a strategy profile s′. Let j
be the minimal index of an agent inC, i.e., j is the agent that
uses the jth lowest-cost path in each of s1, . . . , sk.



Figure 3: Minimal non-SPP networks

In order for s′ to be a profitable deviation, j must reduce
his cost in one of G1, . . . , Gk. Assume, without loss of gen-
erality, that by deviating to s′, agent j reduces his cost inG1.
Denote the edge used by j in s1 by e. There exists an edge
e′ so that

pe′

xe′(s′)
<

pe
xe(s)

.

The edge e′ cannot be one of the edges entirely used in the
profile s1. If e′ is an edge that is not used in s1, it holds
that xe′(s′) ≤ min{ce′ , n− j + 1}. If e′ is partially used in
s1, either e′ = e (in that case, xe′(s′) ≤ xe(s), and j cannot
reduce his cost) or xe′(s′) ≤ min{ce′ , n−j+1}. Therefore,

pe′

min{ce′ , n− j + 1}
<

pe
xe(s)

and the algorithm should have assigned e′ to agent j (or a
previous agent) instead of e. We get a contradiction, thus, s
is a SE.

We now prove the converse direction, namely that for ev-
ery non-SPP network, there is a CCS game played on it that
does not admit a SE. The key lemma in our proof connects
us back to the two examples mentioned in the beginning of
this section. The proof appears in the full version (Feldman
and Geri 2014).

Lemma 3.5. A network is SPP if and only if it does not
embed any of the networks depicted in Figure 3.

Using Lemma 3.5 we can now prove the following. The
proof is similar to that of a lemma proven in (Feldman and
Ron 2012), and is specified here for completeness.

Theorem 3.6. For every non-SPP network G, there exists a
symmetric CCS game played on G that does not admit a SE.

Proof (Sketch). By Lemma 3.5, if G is not an SPP network,
it must embed one of the networks depicted in Figure 3. We
define a game of two agents played on G. For every edge in
the corresponding network, assign costs and capacities as in
Figures 1 and 2. If an edge e is subdivided into e1 and e2, we
set ce1 = ce2 = ce, pe1 = pe, and pe2 = 0. If the source or
the sink are extended using a new edge e, we set ce = 2 and
pe = 0. If an edge e connecting two existing nodes is added,
we set its capacity to be ce = 0. This construction ensures
that each strategy profile in the game played on G emulates
a strategy profile in one of the examples presented earlier in
this section, where a SE does not exist.

This concludes the proof of Theorem 3.3.

4 Strong Price of Anarchy
4.1 EP and SPP Networks
In this section we bound the strong price of anarchy (SPoA)
in capacitated games that admit SE. The following theorem
establishes an upper bound on the SPoA for EP networks.

Theorem 4.1. For every symmetric CCS game played on an
EP network, it holds that SPoA ≤ Hn (if a SE exists).

Epstein et al. (2009) showed that SPoA ≤ Hn for un-
capacitated cost-sharing games. In their proof, they used the
fact that no coalition can beneficially deviate from a strategy
profile s that is a SE (by definition). In particular, if some
coalition C deviates to its corresponding profile in the so-
cially optimal profile s∗, then one of the agents in C weakly
prefers the initial profile s to the new profile (s∗C , s−C). The
desired bound is then derived by the obtained inequalities
for coalitions of sizes n, . . . , 1. The only barrier to applying
the exact same technique to capacitated games is the fact that
the deviation into profile (s∗C , s−C) might be infeasible due
to capacity constraints. Our key lemma in this section shows
that for games played on EP networks there always exists
such a feasible deviation. Note that there may be more than
a single socially optimal profile, but we have the freedom to
choose one of them to be s∗.

Lemma 4.2. Let G be an EP network and s be a SE in a
symmetric CCS game played on G. There exists a feasible
strategy profile s∗ so that the cost of s∗ is minimal, and for
every coalition C, the profile (s∗C , s−C) is feasible.

The following lemma will be used in the proof.

Lemma 4.3. (Feldman and Ron 2012) Let G be an SP net-
work. Let s be a feasible profile of k agents in a game played
on G, and let s′ be a feasible profile of r agents such that
r < k. There exists an s − t path in G that is feasible in s′
and uses only edges that are used in the profile s.

Proof of Lemma 4.2. Let GOPT be the subnetwork that
contains only the edges that are used by an optimal strat-
egy profile, and let N denote the set of agents. We first de-
fine a specific profile s∗ played on GOPT , and then prove
that for every coalition C, the strategy profile (s∗C , s−C) is
feasible. Since G is EP, GOPT is also EP. We define s∗ in
two steps: First, we assign a strategy to as many agents as
possible using recursion (on the structure of GOPT ). Then,
we use Lemma 4.3 to extend this set of strategies to a pro-
file of all agents. The profile s∗ is defined using Algorithm 2,
which chooses a specific profile from all the optimal strategy
profiles. The algorithm gets as input the subnetwork GOPT
that is used by an optimal profile and the strategy profile s,
which is a SE.

It is important to note that the algorithm might possibly
define a strategy profile only for a subset of the agents. In
step 2, N1 ∩ N2 = φ, but it is possible that N1 ∪ N2 ⊂ N
(sinceGOPT is a subnetwork ofG). Therefore, by the end of
step 2, it is possible that not all the agents in N are assigned
a strategy. In step 3(c), it is also possible that not the agents
inN will be assigned a strategy. Thus, we have to extend this
strategy profile to a feasible profile for all agents (using only
edges from GOPT ). We do so by applying Lemma 4.3 to



Algorithm 2 Choosing the optimal profile s∗

Input: GOPT is a graph, N is a set of agents, and s is a
strategy profile.
ChooseOptimalProfile(GOPT , N , s):

1. If GOPT = e, where e is a single edge, return a strategy
profile in which all of the agents in N use the edge e.

2. If GOPT = G1 ‖ G2:
(a) Let Ni ⊆ N be the set of agents that use an edge of Gi

(i = 1, 2).
(b) s1 ← ChooseOptimalProfile(G1, N1, s)

(c) s2 ← ChooseOptimalProfile(G2, N2, s)

(d) Return the union of the profiles: (s1, s2).
3. If GOPT = G1 → e or GOPT = e → G1, where e is an

edge:
(a) s1 ← ChooseOptimalProfile(G1, N, s)

(b) Each agent that has a strategy in s1 will also use the
edge e.

(c) For any other agent that uses e in s, attempt to find an
available path in G1. If found, assign it together with
the edge e to the agent.

(d) Return the profile that was defined in the last three
steps.
• In case it is possible to represent GOPT as both G1 →
e1 and e2 → G2, choose the representation in which
the edge ei is used by the maximal set of agents in s.

the network GOPT , where s is any strategy profile that uses
only edges from GOPT , and s′ is the partial profile that was
defined above. This provides a full definition of the profile
s∗.

We claim that the profile s∗ satisfies the capacity con-
straints. In step 1 of the algorithm, an edge is assigned to
the same agents that use it in the feasible profile s (due to
the way N is split in step 2). In step 3, the edge e is used
only by agents that use it in s, and edges in G1 are assigned
in a way that satisfies the capacity constraints. Therefore, no
edge exceeds its capacity.

Let C be a coalition of agents. We wish to prove that the
strategy profile scomb = (sC , s

∗
−C) is feasible. Let e be an

edge. Let M denote the set of agents that use e in s, and
let M∗ denote the set of agents that use e in s∗. The set of
agents that use e in scomb is (M ∩C)∪ (M∗ ∩ (N\C)). If e
is used only in s, it cannot exceed its capacity in scomb, since
M ∩C ⊆M , and the profile s is feasible. The same applies
to edges that are used only in s∗. It remains to consider edges
that are used in both s and s∗. There are two types of edges
in EP networks: ones that are added to the graph through
an extension of the source or sink, and all other edges. The
algorithm assigns edges of the former type to agents in step
3, and edges of the latter type in step 1.

If edge e is used in both s and s∗, there are two cases:
Case 1: If e is assigned agents in step 1 of the algorithm,

then the set N in this step contains all the agents that use e
in s, namely, N = M , thus, M ⊆ M∗ (e ∈ si ⇒ e ∈ s∗i ).

Figure 4: A game played on an SP network with SPoA = n

The set of agents that use e in scomb is (M ∩ C) ∪ (M∗ ∩
(N\C)) ⊆M∗. Since s∗ is feasible, then e does not exceed
its capacity in scomb.

Case 2: If e is added to the networkGOPT using extension
of the source or the sink, the algorithm assigns e to agents
in step 3. There are two cases. In step 3(c), if each agent
that uses e in s was assigned a path in G1 in s∗, we get that
M ⊆M∗. The set of agents that use e in scomb is (M∩C)∪
(M∗ ∩ (N\C)) ⊆ M∗. Since s∗ is feasible, we get that e
does not exceed its capacity in scomb. The second case is
that there is an agent that uses e in s but does not use e and
G1 in s∗. Due to the definition of s∗, there is no available
path inG1. Therefore, no agent can be assigned a path inG1

later. Each agent that uses e in s∗ must use G1. Hence, no
agents will be assigned the edge e after it is used in step 3
of the algorithm. Thus, M∗ ⊆M . The set of agents that use
e in scomb is (M ∩ C) ∪ (M∗ ∩ (N\C)) ⊆ M . Since s is
feasible, then e does not exceed its capacity in scomb.

We conclude that no edge exceeds its capacity in scomb;
the assertion of Theorem 4.1 follows.

The following theorem extends the class of networks for
which the SPoA is bounded by Hn.

Theorem 4.4. For every symmetric CCS game played on a
network that is a series composition of EP networks, it holds
that SPoA ≤ Hn (if a SE exists), and this bound is tight.

The proof appears in the full version (Feldman and Geri
2014). Note that SPP networks are a special case of the class
specified in the last theorem, and therefore the upper bound
of Hn applies to SPP networks as well.

4.2 SP and General Networks
For SP networks, it is established in (Feldman and Ron
2012) that PoA ≤ n, which directly implies that SPoA ≤
n. We provide an example showing that this bound is tight.

Theorem 4.5. For every ε > 0, there exists an SP network
G and a CCS game played on G such that SPoA ≥ n

1+ε .

Proof. Consider the game played by n agents on the graph
depicted in Figure 4. In this game, SPoA ≥ n

1+ε . The analy-
sis appears in the full version (Feldman and Geri 2014).

For general networks, the SPoA can be arbitrarily high,
even with only two agents.

Theorem 4.6. For every real number R, there exists a CCS
game with two agents in which the SPoA is greater than R.



Figure 5: A game with unbounded SPoA

Proof. Consider the game played by two agents on the graph
presented in Figure 5. In this game, SPoA > R. The analy-
sis appears in the full version (Feldman and Geri 2014).

5 Strong Price of Stability
In some cases, the best SE may be of interest as well. For ex-
ample, if there exists a central entity that can coordinate the
agents around an initial equilibrium. Clearly, it always holds
that PoS ≤ SPoS ≤ SPoA (since SE(∆) ⊆ NE(∆)),
so the upper bounds on the SPoA apply to the SPoS as
well. Interestingly, the upper bounds on the SPoS in all the
classes of network topologies considered here match the up-
per bounds on the SPoA. This is in stark contrast to previ-
ous settings, which exhibited large gaps between worst-case
and best-case equilibria. In what follows, we show that all
the upper bounds on the SPoA established in the previous
section are tight with respect to the best SE. Due to space
constraints, the proofs appear in the full version (Feldman
and Geri 2014).

For EP and SPP networks, the bound of Hn is tight with
respect to the best SE due to an example provided in (Feld-
man and Ron 2012), in which PoS = Hn

1+ε for every ε > 0.
For SP networks, we have shown that SPoA ≤ n, and the

following theorem shows a game for which SPoS = Ω(n).
Theorem 5.1. There exists a symmetric CCS game played
on an SP network, in which the SPoS is at least Ω(n).

Next, we show that as the SPoA, the SPoS can also be
unbounded.
Theorem 5.2. There exists a symmetric CCS game in which
the SPoS can be arbitrarily high.
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